Wegner estimate and level repulsion for Wigner random matrices

نویسندگان

  • László Erdős
  • Benjamin Schlein
چکیده

We consider N × N Hermitian random matrices with independent identically distributed entries (Wigner matrices). The matrices are normalized so that the average spacing between consecutive eigenvalues is of order 1/N . Under suitable assumptions on the distribution of the single matrix element, we first prove that, away from the spectral edges, the empirical density of eigenvalues concentrates around the Wigner semicircle law on energy scales η ≫ N. This result establishes the semicircle law on the optimal scale and it removes a logarithmic factor from our previous result [6]. We then show a Wegner estimate, i.e. that the averaged density of states is bounded. Finally, we prove that the eigenvalues of a Wigner matrix repel each other, in agreement with the universality conjecture. AMS Subject Classification: 15A52, 82B44 Running title: Wegner estimate and level repulsion

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Wegner estimate for Wigner matrices

In the first part of these notes, we review some of the recent developments in the study of the spectral properties of Wigner matrices. In the second part, we present a new proof of a Wegner estimate for the eigenvalues of a large class of Wigner matrices. The Wegner estimate gives an upper bound for the probability to find an eigenvalue in an interval I, proportional to the size |I| of the int...

متن کامل

Eigenvector Distribution of Wigner Matrices

We consider N×N Hermitian or symmetric random matrices with independent entries. The distribution of the (i, j)-th matrix element is given by a probability measure νij whose first two moments coincide with those of the corresponding Gaussian ensemble. We prove that the joint probability distribution of the components of eigenvectors associated with eigenvalues close to the spectral edge agrees ...

متن کامل

Random Matrix Theory and Classical Statistical Mechanics . I . Vertex Models

A connection between integrability properties and general statistical properties of the spectra of symmetric transfer matrices of the asymmetric eight-vertex model is studied using random matrix theory (eigenvalue spacing distribution and spectral rigidity). For Yang-Baxter integrable cases, including free-fermion solutions, we have found a Poissonian behavior, whereas level repulsion close to ...

متن کامل

Universality for random matrices and log-gases Lecture Notes for Current Developments in Mathematics, 2012

Eugene Wigner’s revolutionary vision predicted that the energy levels of large complex quantum systems exhibit a universal behavior: the statistics of energy gaps depend only on the basic symmetry type of the model. These universal statistics show strong correlations in the form of level repulsion and they seem to represent a new paradigm of point processes that are characteristically different...

متن کامل

Several Applications of the Moment Method in Band Random Matrix Model

Random matrix theory (RMT) has wide applications in various areas of science. It can be traced back to sample covariance matrices studied by J. Wishart in data analysis in 1920s1930s. In 1951, E. Wigner associated the energy levels of heavy-nuclei atoms with Hermitian matrices with i.i.d entries. To simplify the complex Hamiltonians of heavy-nuclei atoms, Wigner introduced the ensemble of real ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008